5[u(t)-u(t-1)]-3[u(t-2)-u(t-4)]+0[u(t-4)]=

Simple and best practice solution for 5[u(t)-u(t-1)]-3[u(t-2)-u(t-4)]+0[u(t-4)]= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5[u(t)-u(t-1)]-3[u(t-2)-u(t-4)]+0[u(t-4)]= equation:


Simplifying
5[u(t) + -1u(t + -1)] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0

Multiply u * t
5[tu + -1u(t + -1)] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0

Reorder the terms:
5[tu + -1u(-1 + t)] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0
5[tu + (-1 * -1u + t * -1u)] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0

Reorder the terms:
5[tu + (-1tu + 1u)] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0
5[tu + (-1tu + 1u)] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0

Combine like terms: tu + -1tu = 0
5[0 + 1u] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0
5[1u] + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0

Remove brackets around [1u]
5 * 1u + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0

Multiply 5 * 1
5u + -3[u(t + -2) + -1u(t + -4)] + 0[u(t + -4)] = 0

Reorder the terms:
5u + -3[u(-2 + t) + -1u(t + -4)] + 0[u(t + -4)] = 0
5u + -3[(-2 * u + t * u) + -1u(t + -4)] + 0[u(t + -4)] = 0

Reorder the terms:
5u + -3[(tu + -2u) + -1u(t + -4)] + 0[u(t + -4)] = 0
5u + -3[(tu + -2u) + -1u(t + -4)] + 0[u(t + -4)] = 0

Reorder the terms:
5u + -3[tu + -2u + -1u(-4 + t)] + 0[u(t + -4)] = 0
5u + -3[tu + -2u + (-4 * -1u + t * -1u)] + 0[u(t + -4)] = 0

Reorder the terms:
5u + -3[tu + -2u + (-1tu + 4u)] + 0[u(t + -4)] = 0
5u + -3[tu + -2u + (-1tu + 4u)] + 0[u(t + -4)] = 0

Reorder the terms:
5u + -3[tu + -1tu + -2u + 4u] + 0[u(t + -4)] = 0

Combine like terms: tu + -1tu = 0
5u + -3[0 + -2u + 4u] + 0[u(t + -4)] = 0
5u + -3[-2u + 4u] + 0[u(t + -4)] = 0

Combine like terms: -2u + 4u = 2u
5u + -3[2u] + 0[u(t + -4)] = 0

Remove brackets around [2u]
5u + -3 * 2u + 0[u(t + -4)] = 0

Multiply -3 * 2
5u + -6u + 0[u(t + -4)] = 0

Reorder the terms:
5u + -6u + 0[u(-4 + t)] = 0
5u + -6u + 0[(-4 * u + t * u)] = 0

Reorder the terms:
5u + -6u + 0[(tu + -4u)] = 0
5u + -6u + 0[(tu + -4u)] = 0

Anything times zero is zero.
5u + -6u + 0[tu + -4u] = 0

Reorder the terms:
0 + 5u + -6u = 0
Remove the zero:
5u + -6u = 0

Combine like terms: 5u + -6u = -1u
-1u = 0

Solving
-1u = 0

Solving for variable 'u'.

Move all terms containing u to the left, all other terms to the right.

Divide each side by '-1'.
u = 0

Simplifying
u = 0

See similar equations:

| x^5+5x^4-2x^3-10x^2+x+5=0 | | 2u(t-1)-5u(t-3)+(t-5)= | | (8x-10x)x=-18 | | (8x-10x)x=-1000000 | | 8x-10x^2=-2x | | 10x-10x^2=-x | | x=2y+10 | | w^2+8w=w(24) | | 6x^2+5x-116=0 | | 21x^3=14 | | (5x-1)(x+3)-(x-5)(5x+1)=40 | | x^2-4x+96=0 | | 7y+5=33 | | x=7x^2+5x-5 | | x(C)=7x^2+5x-5 | | x+2(x^2)=36 | | 20x^2+19x-237=0 | | x=8x^2+2x-9 | | 6(-2-5)-8(-2)= | | 9x^2-6=0 | | 2(6z-1)-3(z+4)=6(z+1) | | x^2-4n-1=0 | | 5(3z-7z+4)=0 | | p(x)=x^4-2x^3+8x-16 | | z^2+6z+8= | | 3(4z-1)-2(z+3)=7(z+1) | | 5x+2-3(x+2)=-2(x+1)+5(x-2) | | 4(2p-3)+5(3p-4)=14 | | 52x-1=32x-4 | | 12n-36=n^2 | | (n-6)(n+6)=0 | | n(n+6)=0 |

Equations solver categories